J-PARC High Intensity Neutrino Beam

T. Sekiguchi (KEK) on behalf of T2K Beam Group

Contents

· Introduction to J-PARC Neutrino Beamline

· Current Status

· Prospect for Beamline Upgrade

J-PARC

J-PARC

J-PARC Neutrino Beamline

Features of J-PARC Neutrino Beamline

- · High intensity beam
 - 750 kW proton beam (30 GeV, 3.3×10¹⁴ protons/pulse)
- Off-axis neutrino beam $(2\sim2.5^{\circ})$
 - Narrow band beam ~ 0.6 GeV
 - · flux peak at 1st oscillation max.

Design Philosophy of Neutrino Beamline

Tolerance for high power beam

- All beamline components designed for 750 kW beam
- Equipments that cannot be replaceable after irradiation are designed for 3 or 4 MW beam.

Remote maintenance

- Secondary beamline equipments are highly irradiated with more than 1 Sv/h.
- Beamline components inside Target Station can be replaceable remotely.

Secondary Beamline

- · Target Station (includes target and horns)
- Decay Volume
- · Beam Dump

Target Station

Horn1

All equipments inside Helium Vessel can be replaceable9

Target

· Graphite target

- $26 \text{mm} \phi \times 910 \text{mm}$ -long rod (IG-430U)
- Covered by 0.3mm-thick Ti case

· Helium cooling

- Cooled with 200m/s helium flow
- Thermal stress @ $\Delta T \sim 200K \Rightarrow \sim 7 \text{ MPa}$
 - Tensile strength 37 MPa
 - · Radiation damage is key issue

· Remote exchange

Exchangeable with manipulators

Magnetic Horn

Aluminum alloy conductors (A6061-T6)

- Coaxial cylindrical structure
 - inner=t3mm, outer=t10mm
- Allowable stress=25 MPa (taking into account corrosion)
 - Safety factor ~2

· 320 kA pulsed current (rated)

- · 2.1 T (max.) toroidal field
- $2\sim3$ ms pulse width
- $2.48 \text{ s cycle} \Rightarrow 1.3 \text{ s for } 750 \text{ kW}$

Water cooled

- Total heat load 25 kJ @ 750 kW
 - 15 kJ (beam) + 10 kJ (Joule)
- Spraying water to inner conductor

Target Station / Decay Volume / Beam Dump

· Decay Volume (DV)

- 100 m long
- 2~2.5° OA angle for SK and HK
- water-cooled iron \Rightarrow 4 MW beam acceptable

· Beam Dump (BD)

- Graphite core + water-cooled Al plates
- Acceptable for 3 MW beam

· Helium Vessel (TS, DV, BD)

- 1500 m³ gigantic helium vessel
 - Filled with 1 atm. helium gas.

Decay Volume

Helium Vessel @ TS

Maximum 77 MPa

Beam Dump

Operation Status

- Achieved beam power so far
 - 335~350 kW continuous operation
 - 1.8×10^{14} protons/pulse \Rightarrow world's highest intensity
- Accumulated 1.1x10²¹ POT
 - 7.0×10²⁰ POT for neutrino mode
 - 4.0×10²⁰ POT for anti-neutrino mode

Limitation for High Power Beam

- · What are real problems in high power operation?
 - Things to be well considered at design stage.
 - Mechanical strength
 - · Cooling
 - Fatigue
 - These issues are major consideration, however,
- In reality, beam power is limited by
 - treatment of radioactive wastes
 - radioactive water.
 - · radioactive air.
 - production of hydrogen from water radiolysis

Radio-active Water Disposal

- · Radio-active water @ 750 kW
 - ${}^{7}\text{Be}: 300 \text{ GBq/year} \Rightarrow 99.9\% \text{ removed by Ion Exchangers.}$
 - ${}^{3}T: 150 \text{ GBq/year} \Rightarrow \text{Diluted many times (80 times/year)}$
- Limited dilution tank size \rightarrow 0.5 MW
 - · Highly-activated water can be taken by tanker truck.
 - 750 kW will be accepted.
 - For BD/DV downstream cooling water, connection equipment for tanker truck was prepared and tested.

Hydrogen Production in Horns

- H₂ produced by water radiolysis
 - Expected production rate ~40L/day@750kW
- Hydrogen removal by recombination
 - Forced flashing inside horns \Rightarrow H₂ reaches catalyst efficiently
 - H_2 density after 2 week operation < 0.7% @335 kW
 - 1 MW beam acceptable (w/ keeping H_2 density < 2%)
 - · Degasifier will be introduced for higher recombination efficiency.

Current Acceptable Beam Power

Conponent	Limiting factor	Acceptable value
T	Thermal shock	$3.3 \times 10^{14} \text{ ppp}$
Target	Cooling capacity	0.75 MW
Horn	Conductor cooling	2 MW
	Stripline cooling	0.54 MW
	Hydrogen production	1 MW
	Operation	2.48 sec. & 250 kA
He Vessel	Thermal stress	4 MW
	Cooling capacity	0.75 MW
Decay Volume	Thermal stress	4 MW
	Cooling capacity	0.75 MW
Beam Dump	Thermal stress	3 MW
	Cooling capacity	0.75 MW
Radiation	Radioactive air disposal	1 MW
	Radioactive water	0.5 MW

10 Year Term Plan of Beam Power Improvement

- Design beam power = 750 kW
 - Will be achieved in 2018
 - · Beam power over 750 kW is recently being considered.
- · Aim for 1.3 MW beam by 2026
 - Proton intensity = 3.2×10^{14} protons/pulse.
 - Repetition cycle = 1.16 sec. with new MR power supplies.
- · Can our beamline accommodate to 1.3 MW beam?

Beam Power	# of protons/pulse	Rep. rate
350 kW (achieved)	1.8×10^{14}	2.48 sec.
750 kW (proposed) [original plan]	2.0×10^{14} [3.3×10 ¹⁴]	1.30 sec. [2.10 sec.]
1.3 MW (proposed)	3.2×10^{14}	$1.16 \mathrm{\ sec.}$

Prospect for Hardware Upgrade

· Cooling capacity

- Apparatuses themselves can withstand 1.3 MW beam.
- Improvement of flow rate both for water and helium circulations is needed.
 - Replacement with larger pumps
 - · Replacement with larger-size plumbing
 - \Rightarrow These will be feasible but need 1 year for modification.

Radiation

- Radioactive air
 - Reinforcement of air-tightness \Rightarrow 1.3 MW can be manageable.
- Radioactive water disposal
 - Enlargement of dilution tank
 - Modification of existing tank $\Rightarrow \sim 1.3 \text{MW}$
 - New facility building for water disposal \Rightarrow 2MW
 - · 2 years for construction (no beam stop needed)

Horn Operation Improvement

Operation status

- 250 kA operation for physics data taking since 2010.
 - · Mainly due to refurbishment of old K2K PS (rated 250 kA).
- · Currently, operated with 2.48 s cycle.
 - 1.3 s for 750 kW (not operated with the existing PS)

· 3 PS configuration for 320 kA and 1 Hz operation

- · New power supply developed (2 PS's already produced).
- · Also, low impedance striplines newly developed.

Timeline

- Production of the last PS, transformers, part of striplines
- · Aim to start 320 kA operation from summer 2017.

Improved Acceptable Beam Power

Conponent	Limiting factor	Acceptable value	
M = 4	Thermal shock	$3.3 \times 10^{14} \mathrm{ppp}$	
Target	Cooling capacity	>1.5 MW	
Horn	Conductor cooling	2 MW	
	Stripline cooling	1.25 MW	
	Hydrogen production	>1 MW	
	Operation	1 sec. & 320 kA	
He Vessel	Thermal stress	4 MW	
	Cooling capacity	>1.5 MW	
Decay Volume	Thermal stress	4 MW	
	Cooling capacity	>1.5 MW	
Beam Dump	Thermal stress	3 MW	
	Cooling capacity	>1.5 MW	
Radiation	Radioactive air disposal	>1 MW	
	Radioactive water	0.75→1.3 or 2 MW	

Summary

· J-PARC Neutrino Beamline

- High intense narrow band beam.
- Designed for 750 kW beam

Operation status

- 350 kW stable operation so far.
- · Need improvements on some components such as radiation issues, hydrogen production and so on.

· Beamline improvement

- 1.3 MW beam scenario is being discussed.
- Necessary improvements
 - Higher cooling capacity for every components
 - Treatment of radioactive wastes
 - Horn operation (320 kA and 1 Hz)

Supplemental Slides

Stripline Cooling

· Forced helium flow for stripline cooling.

- Large heat deposit at Horn2 (due to defocused pions)
- Insufficient helium flow rate for Horn2. $\rightarrow 0.54 \text{ MW}$
- Double flow rate for Horn2 \rightarrow 1.25 MW
- · Water-cooled striplines
 - Necessary when beam power goes beyond 1 MW.
 - Under conceptual design.

	Horn1	Horn2	Horn3			
Heat flux per stripline plate (J/m²) @ 1.3 MW						
Total (Beam + Joule)	214	1066	141			
Acceptable Beam Power						
w/ current flow rate	2.10	0.54	3.46			
w/ double flow rate	-	1.25	-			

Radio-active Water Disposal

- For beam power > 750 kW,
 - larger dilution tanks are necessary.
- Solutions
 - Enlarging the existing dilution tank \Rightarrow 1.3 MW at max.
 - New facility building for radio-active water disposal \Rightarrow 2 MW
 - Its operation can be started from 2018 in earliest case.

New facility building

Radioactive Air

Radioactive Air

Improvement of Air Tightness

Caulking between concrete shields

Lay the air-tight sheet

Lay the protection sheet under air-tight sheet

Radioactive Air (Current)

Radioactive Air (Improvement Plan)

Flux Improvement by Neutrino Beamline

- Magnetic horn current
 - $250 \text{ kA} \Rightarrow 320 \text{ kA (rated)}$
 - · 10 % improvement of neutrino flux at far detector

ν flux SK (0.4-1.0GeV, normlized)

Flux Improvement by Neutrino Beamline

- Another benefit of 320 kA operation
 - Low contamination of wrong-sign neutrino background
 - 5~10% reduction at peak (E_v ~0.6 GeV)

